Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Genet ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38458752

RESUMO

BACKGROUND: Plexins are large transmembrane receptors for the semaphorin family of signalling proteins. Semaphorin-plexin signalling controls cellular interactions that are critical during development as well as in adult life stages. Nine plexin genes have been identified in humans, but despite the apparent importance of plexins in development, only biallelic PLXND1 and PLXNA1 variants have so far been associated with Mendelian genetic disease. METHODS: Eight individuals from six families presented with a recessively inherited variable clinical condition, with core features of amelogenesis imperfecta (AI) and sensorineural hearing loss (SNHL), with variable intellectual disability. Probands were investigated by exome or genome sequencing. Common variants and those unlikely to affect function were excluded. Variants consistent with autosomal recessive inheritance were prioritised. Variant segregation analysis was performed by Sanger sequencing. RNA expression analysis was conducted in C57Bl6 mice. RESULTS: Rare biallelic pathogenic variants in plexin B2 (PLXNB2), a large transmembrane semaphorin receptor protein, were found to segregate with disease in all six families. The variants identified include missense, nonsense, splicing changes and a multiexon deletion. Plxnb2 expression was detected in differentiating ameloblasts. CONCLUSION: We identify rare biallelic pathogenic variants in PLXNB2 as a cause of a new autosomal recessive, phenotypically diverse syndrome with AI and SNHL as core features. Intellectual disability, ocular disease, ear developmental abnormalities and lymphoedema were also present in multiple cases. The variable syndromic human phenotype overlaps with that seen in Plxnb2 knockout mice, and, together with the rarity of human PLXNB2 variants, may explain why pathogenic variants in PLXNB2 have not been reported previously.

2.
Hum Mutat ; 42(5): 567-576, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33600052

RESUMO

Amelogenesis imperfecta (AI) describes a heterogeneous group of developmental enamel defects that typically have Mendelian inheritance. Exome sequencing of 10 families with recessive hypomaturation AI revealed four novel and one known variants in the matrix metallopeptidase 20 (MMP20) gene that were predicted to be pathogenic. MMP20 encodes a protease that cleaves the developing extracellular enamel matrix and is necessary for normal enamel crystal growth during amelogenesis. New homozygous missense changes were shared between four families of Pakistani heritage (c.625G>C; p.(Glu209Gln)) and two of Omani origin (c.710C>A; p.(Ser237Tyr)). In two families of UK origin and one from Costa Rica, affected individuals were homozygous for the previously reported c.954-2A>T; p.(Ile319Phefs*19) variant. For each of these variants, microsatellite haplotypes appeared to exclude a recent founder effect, but elements of haplotype were conserved, suggesting more distant founding ancestors. New compound heterozygous changes were identified in one family of the European heritage: c.809_811+12delinsCCAG; p.(?) and c.1122A>C; p.(Gln374His). This report further elucidates the mutation spectrum of MMP20 and the probable impact on protein function, confirms a consistent hypomaturation phenotype and shows that mutations in MMP20 are a common cause of autosomal recessive AI in some communities.


Assuntos
Amelogênese Imperfeita , Metaloproteinase 20 da Matriz , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/patologia , Efeito Fundador , Homozigoto , Humanos , Metaloproteinase 20 da Matriz/genética , Linhagem
3.
Am J Hum Genet ; 91(3): 565-71, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22901946

RESUMO

Autozygosity mapping and clonal sequencing of an Omani family identified mutations in the uncharacterized gene, C4orf26, as a cause of recessive hypomineralized amelogenesis imperfecta (AI), a disease in which the formation of tooth enamel fails. Screening of a panel of 57 autosomal-recessive AI-affected families identified eight further families with loss-of-function mutations in C4orf26. C4orf26 encodes a putative extracellular matrix acidic phosphoprotein expressed in the enamel organ. A mineral nucleation assay showed that the protein's phosphorylated C terminus has the capacity to promote nucleation of hydroxyapatite, suggesting a possible function in enamel mineralization during amelogenesis.


Assuntos
Amelogênese Imperfeita/genética , Proteínas do Tecido Nervoso/genética , Amelogênese/genética , Esmalte Dentário/metabolismo , Durapatita/metabolismo , Feminino , Humanos , Masculino , Mutação , Linhagem
4.
Nephron Physiol ; 122(1-2): 1-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23434854

RESUMO

BACKGROUND/AIMS: Calcium homeostasis requires regulated cellular and interstitial systems interacting to modulate the activity and movement of this ion. Disruption of these systems in the kidney results in nephrocalcinosis and nephrolithiasis, important medical problems whose pathogenesis is incompletely understood. METHODS: We investigated 25 patients from 16 families with unexplained nephrocalcinosis and characteristic dental defects (amelogenesis imperfecta, gingival hyperplasia, impaired tooth eruption). To identify the causative gene, we performed genome-wide linkage analysis, exome capture, next-generation sequencing, and Sanger sequencing. RESULTS: All patients had bi-allelic FAM20A mutations segregating with the disease; 20 different mutations were identified. CONCLUSIONS: This autosomal recessive disorder, also known as enamel renal syndrome, of FAM20A causes nephrocalcinosis and amelogenesis imperfecta. We speculate that all individuals with biallelic FAM20A mutations will eventually show nephrocalcinosis.


Assuntos
Amelogênese Imperfeita/genética , Proteínas do Esmalte Dentário/genética , Predisposição Genética para Doença/genética , Mutação , Nefrocalcinose/genética , Adolescente , Adulto , Amelogênese Imperfeita/complicações , Amelogênese Imperfeita/patologia , Criança , Consanguinidade , Exoma/genética , Saúde da Família , Feminino , Genes Recessivos/genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Nefrocalcinose/complicações , Nefrocalcinose/patologia , Linhagem , Análise de Sequência de DNA/métodos , Síndrome , Adulto Jovem
5.
Saudi J Anaesth ; 4(2): 105-7, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20927271

RESUMO

I-cell disease (mucolipidosis II) is a rare metabolic disorder resulting from the deficiency of a specific lysosomal enzyme, N-acetylglucosamine-1-phosphotransferease. Developmental delay and growth failure are common presentations of I-cell disease. Psychomotor deterioration is rapid and progressive. Some physical signs such as hip dislocations, inguinal hernia, hepatomegaly, joint limitation, and skin changes may be present at birth. Coarse facial features and skeletal abnormalities become more conspicuous with time. The life expectancy of children with this condition is poor, with death usually occurring around the fifth year. A case report of the anesthetic management of gingivectomy with multiple dental extractions in a 5-year-old Omani female with I-cell disease is presented. The problems faced and their management during anesthesia are described.

6.
Am J Hum Genet ; 85(5): 699-705, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19853237

RESUMO

Healthy dental enamel is the hardest and most highly mineralized human tissue. Though acellular, nonvital, and without capacity for turnover or repair, it can nevertheless last a lifetime. Amelogenesis imperfecta (AI) is a collective term for failure of normal enamel development, covering diverse clinical phenotypes that typically show Mendelian inheritance patterns. One subset, known as hypomaturation AI, is characterised by near-normal volumes of organic enamel matrix but with weak, creamy-brown opaque enamel that fails prematurely after tooth eruption. Mutations in genes critical to enamel matrix formation have been documented, but current understanding of other key events in enamel biomineralization is limited. We investigated autosomal-recessive hypomaturation AI in a consanguineous Pakistani family. A whole-genome SNP autozygosity screen identified a locus on chromosome 15q21.3. Sequencing candidate genes revealed a point mutation in the poorly characterized WDR72 gene. Screening of WDR72 in a panel of nine additional hypomaturation AI families revealed the same mutation in a second, apparently unrelated, Pakistani family and two further nonsense mutations in Omani families. Immunohistochemistry confirmed intracellular localization in maturation-stage ameloblasts. WDR72 function is unknown, but as a putative beta propeller is expected to be a scaffold for protein-protein interactions. The nearest homolog, WDR7, is involved in vesicle mobilization and Ca2+-dependent exocytosis at synapses. Vesicle trafficking is important in maturation-stage ameloblasts with respect to secretion into immature enamel and removal of cleaved enamel matrix proteins via endocytosis. This raises the intriguing possibility that WDR72 is critical to ameloblast vesicle turnover during enamel maturation.


Assuntos
Amelogênese Imperfeita/genética , Amelogênese Imperfeita/metabolismo , Genes Recessivos , Mutação , Ameloblastos/metabolismo , Amelogênese Imperfeita/diagnóstico por imagem , Amelogênese Imperfeita/patologia , Sequência de Aminoácidos , Criança , Cromossomos Humanos Par 15 , Consanguinidade , Sequência Conservada , Éxons , Feminino , Marcadores Genéticos , Haplótipos , Humanos , Imuno-Histoquímica , Masculino , Repetições de Microssatélites , Dados de Sequência Molecular , Núcleo Familiar , Paquistão , Linhagem , Mutação Puntual , Polimorfismo de Nucleotídeo Único , Estrutura Terciária de Proteína , Proteínas/genética , Radiografia , Homologia de Sequência de Aminoácidos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...